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Aim. Carvedilol is a nonselective beta-blocker used to reduce portal hypertension./is study investigated the effects and potential
mechanisms of carvedilol in angiotensin II- (Ang II-) induced hepatic stellate cell (HSC) proliferation and contraction.Methods.
/e effect of carvedilol on HSC proliferation was measured by Cell Counting Kit-8 (CCK-8). Cell cycle progression and apoptosis
in HSCs were determined by flow cytometry. A collagen gel assay was used to confirmHSC contraction./e extent of liver fibrosis
in mice was evaluated by hematoxylin-eosin (H&E) and Sirius Red staining. Western blot analyses were performed to detect the
expression of collagen I, collagen III, α-smooth muscle actin (α-SMA), Ang II type I receptor (AT1R), RhoA, Rho-kinase 2
(ROCK2), and others. Results. /e results showed that carvedilol inhibited HSC proliferation and arrested the cell cycle at the G0/
G1 phase in a dose-dependent manner. Carvedilol also modulated Bcl-2 family proteins and increased apoptosis in Ang II-treated
HSCs. Furthermore, carvedilol inhibited HSC contraction induced by Ang II, an effect that was associated with AT1R-mediated
RhoA/ROCK2 pathway interference. In addition, carvedilol reduced α-SMA expression and collagen deposition and attenuated
liver fibrosis in carbon tetrachloride (CCl4)-treated mice. /e in vivo data further confirmed that carvedilol inhibited the ex-
pression of angiotensin-converting enzyme (ACE), AT1R, RhoA, and ROCK2. Conclusions. /e results indicated that carvedilol
dose-dependently inhibited Ang II-induced HSC proliferation by impeding cell cycle progression, thus alleviating hepatic fibrosis.
Furthermore, carvedilol could inhibit Ang II-induced HSC contraction by interfering with the AT1R-mediated RhoA/
ROCK2 pathway.

1. Introduction

Liver fibrosis and cirrhosis are worldwide public health
problems with severe complications including portal hy-
pertension and hepatic failure [1]. /ey are chronic in-
flammation and tissue repair processes in which excess
extracellular matrix (ECM) deposition occurs [2, 3]. Hepatic
stellate cells (HSCs) are the main fibrogenic cell type in the
space of Disse, and activated HSCs proliferate and secrete
large amounts of ECM during fibrosis development.
Moreover, HSC contraction can increase hepatic sinusoidal

pressure, which is important in the development of portal
hypertension [4–6].

Studies have suggested that the renin-angiotensin system
(RAS) is important in the pathogenesis of liver fibrosis [7, 8].
Angiotensin II (Ang II) has been identified as the main
effector molecule of the RAS and plays an important role in
intrahepatic circulation regulation. Moreover, excess Ang II
promotes the inflammatory response and liver fibrosis
[9, 10]. Activation of the RAS resulting in Ang II type I
receptor (AT1R) stimulation plays a crucial role in HSC
activation and fibrogenesis [11]. AT1R is associated with the
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stimulation and activation of several signaling pathways
involved in cell contraction and ECM production. /e
RhoA/Rho-kinase pathway is one of the pathways that
participate in the development of hepatic fibrosis and portal
hypertension [12, 13]. After activation of AT1R by Ang II,
RhoA activates Rho-kinase, which increases myosin light
chain (MLC) phosphorylation and related contraction [12].
In addition, Kitamura et al. [14] demonstrated that the Rho/
Rho-kinase pathway is partly involved in the RAS and affects
the processes of liver fibrosis and steatosis. /erefore, we
infer that Ang II may activate the AT1R-mediated RhoA/
Rho-kinase pathway to participate in the activation, pro-
liferation, and contraction of HSCs.

Carvedilol is an adrenergic receptor blocker that can
effectively reduce portal pressure and is used to prevent
esophageal variceal bleeding. As a relatively new non-
selective beta blocker (NSBB), carvedilol is more effective
than propranolol at reducing portal hypertension in patients
with cirrhosis [15]. In addition to directly reducing portal
blood flow, carvedilol may exert the potential beneficial
effect of decreasing vascular resistance in the liver by
inhibiting HSC contraction and alleviating liver fibrosis. It
has been reported that carvedilol treatment attenuates liver
lesions [16]. Tian et al. [17] demonstrated that carvedilol can
attenuate hepatic fibrosis by ameliorating oxidative stress in
rats with bile duct ligation. /e present study evaluated the
effects of carvedilol on Ang II-induced HSC proliferation
and contraction and further elucidated the underlying
molecular mechanisms of its effects on liver fibrosis and
portal hypertension.

2. Materials and Methods

2.1. Cell Culture. Human LX-2 HSCs were obtained from
the ATCC (VA, United States) and cultured in DMEM
(Invitrogen, New York, USA) supplemented with 10% fetal
bovine serum (BI, Biological Industries, Beit Haemek, Israel)
at 37°C with 5% CO2.

2.2. Cell Proliferation Assay. HSCs (3×103 cells/well) were
seeded in 96-well plates and cultured overnight in DMEM
with 10% fetal bovine serum. /e concentrations of car-
vedilol were determined according to our previous experi-
ments [18]. After the cells were treated with Ang II and
carvedilol at the indicated concentrations for 24 hours, 10 μL
of CCK-8 (Dojindo, Kumamoto, Japan) reagent was added
to each well. /e plates were incubated at 37°C for 1 hour,
and spectro-photometric absorbance was measured at
450 nm using a scanning multiwell spectrophotometer (Bio-
RadModel 550, CA, USA)./e results are based on triplicate
experiments.

2.3. Cell Cycle Assay. HSCs were seeded in 6-well plates at a
density of 5×104 cells/well. /e cells were cultured over-
night in serum-free medium and then treated with Ang II
and various concentrations of carvedilol for 24 hours. /e
cells were then collected and fixed in 70% ethanol overnight
at 4°C. Cell cycle phases were detected with a Muse Cell

Cycle Assay Kit (Merck-Millipore, Darmstadt, Germany)
according to themanufacturer’s protocol./e percentages of
cells in each phase of the cell cycle were determined and
analyzed with a Muse Cell Analyzer (Merck-Millipore,
Darmstadt, Germany). /e results are based on triplicate
experiments.

2.4. Analysis of Apoptosis by Flow Cytometry. HSCs (5×104
cells/well) were seeded in 6-well plates, cultured overnight,
and then treated with Ang II and various concentrations of
carvedilol for 24 hours. A PE Annexin V Apoptosis De-
tection Kit I (BD Biosciences, USA) was used for analysis
according to themanufacturer’s protocol./e percentages of
apoptotic cells were determined by flow cytometry
(FACSCalibur Flow Cytometer, BD Biosciences, USA). /e
data were analyzed with the FACSDiva 7.0 software. /e
results are based on triplicate experiments.

2.5. Analysis of Apoptosis by Fluorescence Staining. HSCs
were seeded in 6-well plates at a density of 2×104 cells/well
and cultured overnight. After the cells were treated with Ang
II and various concentrations of carvedilol for 24 hours,
nuclear morphological changes and DNA fragmentation,
indicating apoptotic cells, were detected with a Hoechst
33258 fluorescence staining kit (Beyotime, Shanghai, China)
according to the manufacturer’s protocol. Apoptotic HSCs
were observed under a fluorescence microscope (Olympus,
Tokyo, Japan).

2.6. Cell Contraction Assay. Hydrated collagen gels were
prepared in 24-well plates using type I rat tail tendon col-
lagen according to the manufacturer’s protocol (Shengyou
Biotechnology, Hangzhou, China). HSCs (3×104 cells/well)
were cultured on the collagen gels for 24 hours. /en, Ang II
and various concentrations of carvedilol/ROCK inhibitor
(Y-27632) were added into each well. /e diameters of the
collagen lattices were monitored until 24 hours after stim-
ulant addition. /e results are based on triplicate
experiments.

2.7. Scanning ElectronMicroscopy (SEM). Aseptic coverslips
were placed in 6-well plates, and HSCs (5×104 cells/well)
were seeded in the plates and cultured for 24 hours. After the
cells adhered to the coverslips, Ang II and different con-
centrations of carvedilol were added. When the cells con-
tracted, the coverslips were washed with PBS and
immobilized immediately in electron microscopy fixative
(Servicebio, Wuhan, China) for 1 hour. After the coverslips
were fixed, serially dehydrated, and dried, they were ob-
served under a scanning electron microscope (SU8010,
Hitachi, Japan).

2.8. Animal Model. Forty adult male C57BL/6 mice were
purchased from the Experimental Animal Center of Shan-
dong University (Jinan, China). /e mice were kept at a
constant temperature and given laboratory chow and water
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Figure 1: Continued.
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ad libitum./e experimental protocols were approved by the
Animal Care and Utilization Committee of Shandong
Provincial Hospital affiliated to Shandong University.

/e experiment was performed according to our pre-
vious method for constructing a mouse model of liver fi-
brosis [19]. /e liver fibrosis model was successfully
constructed by intraperitoneal injection of CCl4 (25% CCl4
in olive oil) twice a week for 6 weeks, and mice in the
carvedilol group were treated with carvedilol at the same
time (10mg/kg/d, by gavage). Mice in the control group
were injected intraperitoneally with olive oil alone. /e
survival rate of the mice was 80% until the end of the
experiment.

2.9. Histological Examination and Immunohistochemical
Staining. Liver tissues were fixed with 4% formaldehyde and
sectioned for H&E and Sirius Red staining. Liver fibrosis was
assessed according to the METAVIR scale (F0, no liver fi-
brosis; F1, portal fibrosis; F2, periportal fibrosis; F3, bridging
fibrosis; F4, liver cirrhosis) [20]. After being deparaffinized
and serially dehydrated, the sections were treated with
hydrogen peroxide for 30 minutes and then incubated with
primary antibody overnight at 4°C. /e primary antibodies
used for immunohistochemical staining were anti-angio-
tensin-converting enzyme 1 (ACE1) antibody (1 : 200,
Abcam, MA, USA) and anti-fibronectin antibody (1 : 2000,

Abcam, MA, USA). After treatment with a biotinylated
secondary antibody for 30 minutes at 37°C, the positive areas
were stained with diaminobenzidine (DAB) and the nuclei
were counterstained with hematoxylin. Immunohisto-
chemical analysis was performed with Image-Pro Plus 6.0
software.

2.10. Western Blot Assay. Proteins were extracted for
Western blot analysis, and concentrations were detected by
the bicinchoninic acid (BCA) protein determination
method. /e proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to polyvinylidene fluoride (PVDF) mem-
branes, which were incubated in 5% nonfat milk for 1 hour
and then with primary antibodies overnight at 4°C. After
secondary antibody incubation and membrane washing,
the bands were detected using enhanced chem-
iluminescence (Millipore, USA). /e results were analyzed
with ImageJ software.

2.11. Statistical Analysis. All data are expressed as the
mean ± standard deviation. Student’s t-test or one-way
ANOVA were used for statistical significance analy-
sis. Values of P< 0.05 were considered statistically
significant.
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Figure 1: (a) HSCs were treated with different concentrations of Ang II and the proliferative effects were evaluated by CCK-8. ∗P< 0.05
versus control; ∗∗P< 0.01 versus control. (b) After HSCs were stimulated with Ang II at 1 μM and treated with different concentrations of
carvedilol, the proliferative effects were evaluated by CCK-8. #P< 0.05 versus control; ∗P< 0.05 versus Ang II group; ∗∗P< 0.01 versus Ang
II group; ∗∗∗P< 0.001 versus Ang II group; P> 0.05 (Ang II +DMSO) group versus Ang II group. (c) Effect of carvedilol on cell cycle
progression in HSCs was detected by a muse cell analyzer. (d) Western blot analyses of cell cycle regulatory proteins. #P< 0.05 versus
control; ##P< 0.01 versus control; ∗P< 0.05 versus Ang II group; ∗∗P< 0.01 versus Ang II group. Representative blots were obtained from
three independent experiments.
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3. Results

3.1. Carvedilol Inhibited Proliferation and Cell Cycle Pro-
gression in HSCs Treated with Ang II. /e effect of Ang II on
HSC proliferation was evaluated by the CCK-8 assay. /e
results showed that Ang II enhanced HSC proliferation in a
dose-dependent manner and produced a significant effect at
1 μM (Figure 1(a)). Carvedilol dose-dependently inhibited
the proliferation of HSCs stimulated with Ang II. Moreover,
there was no significant difference between the Ang II (1 μM)
group and the Ang II (1 μM)+DMSO group (Figure 1(b)).

To investigate the mechanism by which carvedilol reduced
HSC proliferation, cell cycle analysis was performed in
carvedilol-treated HSCs. /e data showed that carvedilol
dose-dependently prolonged the G0/G1 phase, which re-
duced the number of cells in the S and M phases among
HSCs activated by Ang II (Figure 1(c), P< 0.05 vs. the
control and Ang II groups). /e results demonstrated that
carvedilol might arrest cell cycle progression to inhibit HSC
proliferation. Cyclins and cyclin-dependent kinases (CDKs)
are known to play important regulatory roles in cell cycle
progression. Cyclin D, cyclin E, CDK2, and CDK4 are
crucial regulatory proteins of the G1 phase./eWestern blot
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Figure 2: Flow cytometry analyses of apoptosis in HSCs treated with Ang II (1 μM) and carvedilol for 24 hours. ∗P< 0.05 versus Ang II
group; ∗∗P< 0.01 versus Ang II group. Results were obtained from triplicate experiments.
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Figure 3: (a) Hoechst fluorescence staining of apoptosis in HSCs treated with Ang II (1 μM) and carvedilol for 24 hours. /e nuclei of
apoptotic HSCs exhibit bright blue fluorescence, as indicated by white arrows. (b) Western blot analyses of Bcl-2 and Bax. #P< 0.05 versus
control group; ###P< 0.001 versus control group; ∗P< 0.05 versus Ang II group; ∗∗P< 0.01 versus Ang II group; ∗∗∗P< 0.001 versus Ang II
group. Representative blots were obtained from three independent experiments.
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Figure 5: Continued.
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results showed that the expression of these proteins was in-
creased in the Ang II group, while carvedilol notably inhibited
this Ang II-mediated upregulation (Figure 1(d)). In general,
our results show that carvedilol inhibited HSC proliferation
and caused G0/G1 phase cell cycle arrest by altering cell cycle
regulatory proteins in Ang II-treated HSCs.

3.2. Carvedilol Increased Apoptosis in HSCs Treated with Ang
II. As HSC apoptosis plays a key role in the reversal of liver
fibrosis, we detected the apoptotic rate of HSCs by flow
cytometry analysis. /e results demonstrated that carvedilol
dose-dependently enhanced the proportion of Ang II-
treated HSCs in early apoptosis. /e proportion of apoptotic
HSCs was significantly increased by 20 μM carvedilol
treatment (Figure 2). When apoptosis occurs, nuclear
fragmentation appears, and chromatin condensation be-
comes evident in cells. Hoechst staining showed that apo-
ptotic HSCs exhibited nuclear fragmentation and DNA
condensation with striking brilliant blue staining after
treatment with carvedilol (Figure 3(a)). /e regulation of

apoptosis is extremely complicated, and Bcl-2 family pro-
teins located in mitochondria play vital roles in the process.
Western blot analysis revealed increased expression of the
antiapoptotic protein Bcl-2 in the Ang II group; however,
expression was downregulated by carvedilol in a dose-de-
pendent manner. In contrast, expression of the proapoptotic
protein Bax was decreased in the Ang II group and upre-
gulated dose-dependently by carvedilol (Figure 3(b)). In
vitro experimental results suggest that the mitochondrial
apoptosis pathway is involved in the apoptosis induced by
carvedilol.

3.3. Carvedilol Inhibited Ang II-Induced HSC Contraction.
A hydrated collagen lattice method showed that HSCs
underwent significant contraction in the presence of Ang II
(P< 0.01). /e diameters of the gels were measured to
evaluate the contraction effect, and we found that carvedilol
impeded the gel contraction induced by Ang II in a dose-
dependent manner (Figure 4(a)). Under SEM, HSCs in the
control group were oval and had long protrusions. Upon
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Figure 5: (a–d) HSCs were treated with Ang II (1 μM) and different concentrations of carvedilol. Western blot analyses of collagen I, AT1R,
collagen III, RhoA, ROCK2, p-MLC, and MLC. #P< 0.05 versus control group; ##P< 0.01 versus control group; ∗P< 0.05 versus Ang II
group; ∗∗P< 0.01 versus Ang II group. (e, f ) HSCs were treated with Ang II (1 μM), carvedilol (5 μM), and olmesartan (10 μM).Western blot
analyses of collagen I, AT1R, RhoA, and ROCK2. #P< 0.05 versus control group; ##P< 0.01 versus control group; ###P< 0.001 versus
control group; ∗P< 0.05, P< 0.05 (Ang II + olmesartan) group versus (Ang II + carvedilol) group, P< 0.05 (Ang
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Ang II treatment, the morphology of the cells changed
rapidly, with the cells extending; carvedilol clearly inhibited
this effect (Figure 4(b)). In addition, when the concentration
was 15 μM, Y-27632 significantly inhibited Ang II-induced
gel contraction (Figure 4(c)).

3.4. ;e Effect of Carvedilol on the AT1R-Mediated RhoA
Pathway in HSCs Treated with Ang II In Vitro. Ang II is
considered to play a significant role in liver fibrogenesis by
binding to Ang II receptors, which are expressed in activated
HSCs. In vitro experiments demonstrated that collagen
synthesis and cell proliferation were increased in Ang II-
treated HSCs and that carvedilol inhibited these effects in a

dose-dependent manner (Figures 5(a) and 5(b)). In the Ang II
group, the protein expression of AT1R was upregulated
compared to that in the control group. After carvedilol
treatment, activation and proliferation of HSCs were sup-
pressed, and AT1R expression was also decreased
(Figure 5(a)).Moreover, the data showed that activation of the
AT1R-mediated RhoA pathway and expression of pathway
components were increased in the Ang II group. Additionally,
collagen I and III, markers of HSC profibrotic activity,
exhibited significantly higher expression in the Ang II group
than that in the other groups. However, the expression levels
of collagen I, collagen III, RhoA, and ROCK2 were dose-
dependently reduced by carvedilol treatment (Figures 5(a)–
5(c)). Furthermore, phosphorylation of MCL was decreased
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Figure 6: Carvedilol attenuated liver fibrosis in CCl4-treated mice. (a) H&E staining (magnification ×100). (b) Sirius Red staining
(magnification ×100). Collagen deposition was quantified using Image-Pro Plus software. ##P< 0.01 versus oil group; ∗∗P< 0.01 versus
CCl4 group; n� 6. (c) /e expression of Fibronectin in liver tissues was detected by immunohistochemistry staining (magnification ×100).
###P< 0.001 versus oil group; ∗∗P< 0.01 versus CCl4 group; n� 6. (d–f)/e expression levels of α-SMA, collagen I, and collagen III in liver
tissues were detected by Western blot assay. ###P< 0.001 versus oil group; ##P< 0.01 versus oil group; ∗∗P< 0.01 versus CCl4 group;
∗P< 0.05 versus CCl4 group. Representative blots were obtained from three independent experiments.
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with carvedilol treatment such that HSC contraction was
inhibited (Figure 5(d)). Olmesartan, an Ang II receptor an-
tagonist, was applied to confirm the role of AT1R blockade in
carvedilol inhibition of the RhoA pathway. We found that
olmesartan (10 μM) effectively inhibited AT1R protein ex-
pression and collagen synthesis (Figure 5(e)). In addition,
expression of AT1R-mediated RhoA/ROCK2 pathway com-
ponents was reduced to a great extent in the olmesartan
(10 µM) group, and more significant inhibition of the ex-
pression of these proteins was observed after treatment with
the combination of olmesartan and carvedilol (Figure 5(f)).
/e results showed that carvedilol inhibited the expression of
AT1R-mediated RhoA/ROCK2 pathway components.

3.5. ;e Effect of Carvedilol on Liver Fibrosis In Vivo. /e
effect of carvedilol on liver fibrosis in vivo was evaluated by
H&E and Sirius Red staining. /e liver tissues of mice in the
CCl4 model group (METAVIR> F2) showed increased in-
flammatory cell infiltration and fibrous tissue hyperplasia
compared to those in the carvedilol treatment group
(METAVIR≤ F2) (Figure 6(a)). Sirius Red staining showed
marked collagen deposition in the CCl4 model group,
whereas the extent of staining was reduced in the carvedilol
treatment group (Figure 6(b)). In addition, fibronectin can
be used to evaluate the degree of liver fibrosis, and the
immunohistochemical staining results showed that carve-
dilol treatment reduced fibronectin expression in liver tis-
sues (Figure 6(c)). α-SMA is a primary fibrotic marker
during liver fibrogenesis, and its expression increases after
HSC activation. /e results showed that the expression of
α-SMA in the CCl4 group was significantly increased but
that carvedilol treatment inhibited this CCl4-induced in-
crease (Figure 6(d)). Moreover, Western blot analysis
showed that the expression of collagen I and III was de-
creased in the carvedilol treatment group (Figures 6(e) and
6(f)). /e data indicate that carvedilol reduced HSC acti-
vation and consequently attenuated liver fibrosis.

3.6. ;e Effects of Carvedilol on ACE1 Expression in a Mouse
Liver Fibrosis Model. /e expression of ACE1 in mice with
CCl4-induced liver fibrosis was assessed by immunohisto-
chemistry and Western blot analysis (Figures 7(a) and 7(b)).
Immunohistochemical staining showed that ACE1 was lo-
cated primarily in liver vascular endothelial cells and hepatic
sinusoidal lining cells. Although ACE1 was barely expressed
in the normal control and olive oil groups, its expression was
markedly enhanced in liver fibrosis tissues in the CCl4 model
group. In the carvedilol treatment group, ACE1 decreased
with the improvement of liver fibrosis. /e results suggest
that ACE1 expression is associated with the extent of liver
fibrosis. As ACE1 plays a pivotal role in Ang II production,
we infer that ACE1 and Ang II are involved in the process of
liver fibrogenesis.

3.7. ;e Effect of Carvedilol on the AT1R-Mediated RhoA
Pathway In Vivo. Our study further verified the effect of
carvedilol on the AT1R-mediated RhoA/ROCK2 pathway in

mice with CCl4-induced liver fibrosis. /e expression and
activity of AT1R were upregulated in the CCl4 model group,
whereas carvedilol treatment attenuated liver fibrosis,
leading to a significant decrease in AT1R expression
(Figure 8(a)). Additionally, expression of RhoA and ROCK2,
downstream effectors of AT1R, was consequently down-
regulated by carvedilol treatment (Figure 8(b))./ese in vivo
experiments further demonstrate that carvedilol may reduce
HSC activation and proliferation, thus inhibiting the AT1R-
mediated RhoA pathway.

4. Discussion

/e development of liver fibrosis and portal hypertension is
a multifunctional process involving multiple types of cells,
cytokines, chemokines, and growth factors [21]. RAS plays
an important role in the development of various chronic
liver diseases [22, 23]. Studies have indicated that activated
HSCs can express elements of the RAS, including AT1R
[24, 25]. Our present research demonstrated that Ang II
promoted HSC proliferation, upregulated fibrotic marker
expression, and induced cell contraction in vitro. However,
as a drug commonly used to lower portal hypertension,
carvedilol was found to markedly inhibit Ang II-induced
effects on cell proliferation and contraction.

HSCs are the major fibrogenic cell type in the liver [26],
and the activation, proliferation, and apoptosis of HSCs play
crucial roles in liver fibrogenesis. Proliferating HSCs can
produce excess ECM components, such as collagen types I
and III, which form pathologic fibrous tissues [27]. In our
study, a CCK-8 assay demonstrated that carvedilol dose-
dependently reduced the proliferation of HSCs induced by
Ang II (1 μM). /e prolonged G0/G1 phase of the cell cycle
showed that carvedilol impeded cell cycle progression in
Ang II-treated HSCs, which might be the mechanism by
which carvedilol inhibits HSC proliferation. CDK/cyclin
complexes play critical roles in cell cycle control: cyclins are
considered to aid in the transitions between cell cycle phases,
and CDKs drive cell cycle progression [28, 29]. Studies have
confirmed that the cyclin D/CDK4 complex controls the G1
phase and that the cyclin E/CDK2 complex can drive the G1/
S cell cycle transition [30–32]. In the present study, G1 phase
regulatory proteins, including cyclin D, cyclin E, CDK2, and
CDK4, were investigated, and the results showed that car-
vedilol reduced the expression of these regulatory proteins in
Ang II-treated HSCs, leading to G1 phase arrest. Further-
more, we observed HSC apoptosis after carvedilol treatment
in vitro. Decreased Bcl-2/Bax ratios cause cytochrome C
release and trigger caspase cascade activation, resulting in
cellular fragmentation [33]. /e results showed that car-
vedilol decreased the Bcl-2/Bax ratio in HSCs, which in-
dicated that mitochondrial apoptosis and HSC proliferation
inhibition occurred. In addition, α-SMA, collagen I and III
are considered markers of HSC activation, proliferation and
fibrogenesis, and we found that the expression of α-SMA and
collagen I and III was downregulated after carvedilol
treatment. Both in vitro and in vivo experiments confirmed
that carvedilol inhibited HSC proliferation and collagen
deposition, attenuating liver fibrogenesis.
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When liver injury occurs, HSCs are activated and be-
come contractile, which increases intrahepatic vascular re-
sistance and plays an important role in the development of
portal hypertension [34]. HSC contraction is affected by
several vasoactive substances such as Ang II. Studies have
shown that hepatic Ang II breakdown and/or angiotensin-
(1–7) production can improve intrahepatic resistance
[35]. Our in vitro study showed that cellular morphology,
as observed under SEM, changed when HSC contraction
was induced by Ang II and that carvedilol effectively
inhibited this response. /is finding suggests that car-
vedilol may further reduce portal hypertension by
inhibiting HSC contraction, and this may constitute a
molecular mechanism by which carvedilol decreases
portal hypertension. Activated HSCs can express AT1R,
which in turn plays an important role in HSC activation
and fibrogenesis [36–38]. Studies have reported that Ang
II receptor antagonists, such as olmesartan, can improve
liver fibrosis by suppressing HSC proliferation [7, 8, 22].
/e results revealed that carvedilol inhibited HSC acti-
vation and proliferation, thus significantly decreasing
AT1R expression on the surface of HSCs. On the other
hand, the reduction in AT1R expression inhibited colla-
gen synthesis and HSC proliferation. It has been reported
that AT1R can stimulate and activate the RhoA/Rho-ki-
nase pathway involved in cell contraction and ECM
production [13, 14]. Our in vitro experiments demon-
strated that the RhoA/ROCK2 pathway was inhibited by
carvedilol in a dose-dependent manner and that this effect
was associated with AT1R inhibition in Ang II-treated
HSCs. /e results also suggest that carvedilol may inhibit
HSC contraction through the RhoA/ROCK2 pathway. In
the gel contraction experiment, Y-27632 could inhibit
Ang II-induced HSC contraction, which indicated that
ROCK was a downstream effector of carvedilol’s effects on
HSCs. We also established a mouse liver fibrosis model by
intraperitoneally injecting mice with CCl4 for 6 weeks,
and in vivo experiments further verified the effect of
carvedilol on the AT1R-mediated RhoA/Rho-kinase
pathway, which might affect cell contraction and
fibrogenesis.

/e RAS plays crucial roles in regulating blood pressure
and maintaining electrolyte balance [39]. Inhibition of
systemic RAS has been shown to be effective in reducing
portal hypertension [40]. In addition to the systemic RAS,
studies have indicated that a local RAS exists in multiple
organs, including the liver [41, 42]. Ang II is a vasocon-
strictor generated by the activity of ACE (ACE1). /e
intrahepatic RAS is active in chronic liver diseases with
increased local levels of Ang II, which can induce an array of
fibrogenic actions [38, 43]. Studies have suggested that
blocking the local RAS with ACE inhibitors or angiotensin
receptor blockers (ARBs) may be effective for antifibrotic
therapy [8, 44, 45]. In the present study, ACE expression was
significantly higher in liver fibrosis model mice than in
control mice. We infer that local production of Ang II may
be consequently increased to aggravate liver fibrosis. After
carvedilol treatment, the extent of liver fibrosis was atten-
uated, and the expression of ACEwas decreased accordingly.

/us, the results indicate that ACE may be a promising
biomarker for liver fibrosis.

5. Conclusions

In conclusion, in vitro experiments demonstrated that
carvedilol inhibited Ang II-induced HSC proliferation,
impeded cell cycle progression, and induced HSC apoptosis.
In vivo experiments further confirmed that carvedilol
inhibited HSC activation and proliferation to attenuate liver
fibrosis. Carvedilol also influenced elements of the intra-
hepatic RAS and markedly decreased the expression of ACE
in fibrotic liver tissue. Moreover, carvedilol inhibited Ang II-
induced HSC contraction by interfering with the AT1R-
mediated RhoA/ROCK2 pathway, which may be one of its
molecular mechanisms for reducing portal hypertension.
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